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ABSTRACT

Galaxy cluster surveys allow to place tight constraints on key cosmological parameters
and to improve our knowledge about dark energy. In order to fully exploit current and next-
generation cluster samples it is of crucial importance to rely on an accurately calibrated cluster
mass function. Typically, the calibration is done against large N -body simulations, taking only
dark matter into account. We use the hydrodynamical Magneticum simulations to quantify the
impact baryons have on the cluster mass function. Including baryonic effects leads to...
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1 INTRODUCTION

Galaxy clusters are the largest collapsed objects in the Universe.
Their distribution in mass and redshift is highly sensitive to key
cosmological parameters such as the matter density Ωm, or the
amount of matter fluctuations in the Universe σ8. Furthermore, they
can be used to constrain different models of dark energy as well the
neutrino sector. Large cluster surveys have therefore proven as use-
ful cosmological probes (e.g. Vikhlinin et al. 2009; Mantz et al.
2010; Rozo et al. 2010; et al. 2013; Planck Collaboration et al.
2013; Bocquet et al. 2014).

In all these analyses, the observed abundance of galaxy clus-
ters is linked to the linear matter power spectrum through the clus-
ter mass function, which can be estimated through an analytical
approach (Press & Schechter 1974) or calibrated against numerical
simulations. Tinker et al. (2008) use a set of large N -body simula-
tions to provide a calibrated fitting function. While their mass func-
tion has established as the standard reference which is used in most
cosmological analyses, the literature offers several alternatives (e.g.
Jenkins et al. 2001; White et al. 2002; Warren et al. 2006; Watson
et al. 2013). All these mass functions are comparable, and Planck
Collaboration et al. (2013) show that their cosmological constraints
are basically insensitive to the adopted mass function.

However, all mass functions obtained from N -body simula-
tions suffer from the simplification of neglecting the baryonic com-
ponent of the clusters. The pressure in the baryonic gas effectively
leads to lower-mass clusters, and a decrease of the expected cluster
abundance. Recently, various authors have investigated the bary-
onic impact on the cluster mass function (e.g. Cusworth et al.
2014). However, many of these works suffer from too simplistic
modeling of the baryonic gas in the numerical simulations. Some
of these simplifications are pre-heating at high redshift, negligence
of radiative cooling or the baryons’ self-gravity, and many other
(probably cite something). Nevertheless, these studies suggest that
baryonic dynamics do have an appreciable impact on the cluster

mass function, by lowering the overall abundance of clusters by
about 15% Cusworth et al. (2014).

In this work, we analyze a simulated cluster sample generated
by the Magneticum simulations (Dolag K. et al. 2014). These are
a set of hydrodynamical simulations covering large cosmological
volumes for a variety of resolutions. We use these data to calibrate a
cluster mass function that takes into account baryonic effects. This
paper is organized as follows: In Section 2 we present the Mag-
neticum simulations and the cluster sample used for this work. In
Section 3 we introduce our analysis method used to perform the
fit, and show how we tested it for potential biases. We present our
fit results in Section 4 and disucss the cosmological impact in Sec-
tion 5.

We will consider different mass definitions: (1) virial mass
Mvir, which is calculated by integrating out to the cluster’s virial
radius, (2) “mean overdensity” mass (e.g. M200, mean), which is the
mass enclosed within a sphere of radius r200, mean, in which the
mean matter density is equal to X times the Universe’s mean den-
sity at the cluster’s redshift, and (3) “critical overdensity” mass
(e.g. M500, crit), which is analogous to (2) but with respect to
the critical density. The critical density at the cluster’s redshift is
ρcrit(z) = 3H2(z)/8πG, whereH(z) is the Hubble parameter; the
mean matter density is ρ̄m(z) = Ωm(z)ρcrit(z).

2 SIMULATIONS AND CLUSTER SELECTION

2.1 The Magneticum Simulations

This Section will need some input from Klaus. Introduce the hy-
drosims and tell why they are so incredibly awesome. We also ran
some DM simulations for comparison.

All simulations are carried out assuming a spatially flat
ΛCDM cosmology with matter density Ωm = 0.272, baryon den-
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Table 1. Mass function parameters from our dark matter simulations, our hydro simulations, and from the literature (Tinker et al. 2008). Cluster masses are
defined with respect to M200,mean.

Parameter A a b c Az az bz

DM 0.223 ± 0.024 1.69 ± 0.10 2.05 ± 0.23 1.242 ± 0.028 −0.25 ± 0.35 0.091 ± 0.088 −0.02 ± 0.31
hydro 0.282 ± 0.035 2.14 ± 0.18 1.54 ± 0.14 1.319 ± 0.039 −0.38 ± 0.33 0.022 ± 0.072 0.08 ± 0.21

Tinker et al. (2008) 0.186 1.47 2.57 1.19 -0.14 -0.06 0.011

sity Ωb = 0.0456, variance in the matter field1 σ8 = 0.809, and
Hubble constant H0 = 70.4.

2.2 Halo Selection

This Section needs input from Alex who actually produced the cata-
logs. Also mention that we chose a rather large number of particles
for the haloes in the hydro simulations. Not sure if we explicitly
mention the convergence problems we observed otherwise.

3 ANALYSIS METHOD

We provide the theoretical background on the cluster mass func-
tion and introduce its functional form. We then present the method
used to perform the multi-dimensional fits used to extract the mass
function parameters from our simulations.

3.1 The Cluster Mass Function

The number density of galaxy clusters with respect to mass M is

dn

dM
= f(σ)

ρ̄m
M

d lnσ−1

dM
, (1)

with the mean matter density ρ̄m (at redshift z = 0), and

σ(M, z) =
1

2π2

∫
P (k, z)Ŵ 2(kR)k2dk, (2)

the variance of the matter density field P (k, z) smoothed with the
Fourier transform Ŵ of the real-space top-hat window function
of radius R = (3M/4πρ̄m)1/3. The function f(σ) is assumed
to be universal, i.e. independent of cosmology, and is commonly
parametrized as

f(σ) = A

[(σ
b

)−a

+ 1

]
exp

(
− c

σ2

)
(3)

with four parameters A, a, b, c that need to be calibrated. Here, A
sets the overall normalization, a and b are the slope and normaliza-
tion of the low-mass power law, and c sets the scale of the high-
mass exponential cutoff (analogous to e.g. Tinker et al. 2008).

If working with the virial mass definition Mvir, the function
f(σ) is indeed expected to be universal. However, when using other
definition with respect to mean or critical density, this universality
will no longer hold, and we parametrized a possible redshift depen-
dence as a power law of 1 + z:

A(z) = A0(1 + z)−Az (4)

a(z) = a0(1 + z)−az (5)

b(z) = b0(1 + z)−bz (6)

where the subscript 0 denotes the values at redshift z = 0, and
where Az, az, bz are additional fit parameters. The cutoff scale c is

1 See Equation 2 for the exact definition

a constant. Note that the cluster number density depends on redshift
through σ(M, z) and the explicit redshift dependence of f(σ).

3.2 Parameter Estimation

When fitting for the mass function, we are facing a problem
with moderately large dimensionality (7 parameters) and utilize
the emcee2 code for efficient exploration of parameter space
(Foreman-Mackey et al. 2013). The likelihood of each point in pa-
rameter space p is calculated in the following way: We calculate the
matter power spectrum using the transfer function by Eisenstein &
Hu (1998, 1999) as this is the prescription used to set up the initial
conditions of the Magneticum simulations. Then, for each redshift,
we calculate the mass function following Equations 1-3. We apply
a binning to the data that is equally distributed in log-space with
∆ log10M = 0.01. We checked that decreasing the bin size does
not change our results. Finally, we evaluate the likelihood L by ap-
plying the Cash statistics (Cash 1979), which is an application of
Poisson statistics

lnL =
∑
i

ln
dn(Mi|p, z)
d logM

∆ logM −
∫
dn(M |p, z)

dM
dM, (7)

where i runs over all clusters in the sample. Note that the second
term equals the total number of expected clusters.

In practice, given a set of fit parameters p, we perform the
above calculation for each snapshot redshift and for each of the
simulation’s boxes separately, sum the log-likelihoods, and return
the result to emcee.

We tested our fitting procedure against several mock catalogs
that contain a factor 100 times more clusters than our data. We
recovered the input values within the uncertainties and conclude
that our fitting method is unbiased to a level that is much smaller
than the errors we report.

4 RESULTS

We use the fitting method described above to perform mass func-
tion fits against our hydro and DM simulation samples. We com-
pare our results to previous studies. We present our mass function
for M500, crit in Section 4.2.

4.1 Mass function fits and comparison with other studies

Figure 2 shows our main results. We show the data points for the
DM and hydro simulations as well as our best fit mass functions for
both sets of simulations. The DM simulations are in good agree-
ment with the fitting formula by Tinker et al. (2008), while it is
clear that the hydro simulations predict less massive clusters. For
redshifts smaller than about 1, we expect about 10% less clusters

2 http://dan.iel.fm/emcee/current

c© 0000 RAS, MNRAS 000, 000–000



Baryons and the cluster mass function 3

1011 1012 1013 1014 1015 1016

M/M�

10�8

10�7

10�6

10�5

10�4

10�3

10�2

10�1

d
N

/
d

M
[h

3
M

pc
�

3
]

z=2
z=1
z=0.5
z=0

Figure 1. Mass function dN/dM at four different redshifts. The round
symbols correspond to the DM simulations, and triangles correspond to the
hydro simulations. The mass function from Tinker et al. (2008) is indicated
by the solid lines. Note that our fits are not distinguishable from their fit in
such a figure given its large dynamic range.

from the hydro simulations. Note however that the error bars are
quite large, and the 2σ regions shown in Figure 2 still overlap.

In Table 1 we present the fit parameters obtained from our
DM and hydro mass functions. Masses are defined as M200,m. The
corresponding covariance matrices are presented in Table ??.

• Present the overall goodness of the fits (χ2).
• Same thing for each redshift, i.e. test whether the redshift evo-

lution is adequately parametrized.

4.2 Mass function for M500, crit

In cluster cosmology, the most commonly used mass definition is
M500, crit. The choice of this definition is due to the fact that it rep-
resents the best regime for X-ray observations. Using a cluster cata-
log extracted from our hydro simulations using this mass definition,
we repeat the analysis described above, and fit for the mass function
parameters. Our results are presented in Table 2.

The tabled values can directly be used for any cluster study
that uses the same mass definition. Blabla some statement about
whether or not the use the covariance matrix will change cosmo-
logical results.

5 COSMOLOGICAL IMPACT

We discuss how our findings from Section 4 affect cluster cosmol-
ogy, and show how the use of a different mass function affects con-
straints in the Ωm-σ8 plane. We analyze our hydro sample, assum-
ing the three different mass function considered so far. In Table 3
and Figure 4 we show how the use of a non-hydro mass function
leads to an underestimation of Ωm by about ∆Ωm ≈ −0.01.

• Interestingly, our hydro and the Tinker MF give identical con-
straints on σ8, and our DM prefer a slightly higher value.
• Compare this shift to current (and future?) constraints.
• How does it affect the cluster vs. CMB tension?
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Figure 2. Relative difference between our simulations (DM in green, hy-
dro in blue) and the Tinker fit. The data points are slightly offset in mass
direction for better readability. The solid lines correspond to the best fit;
the colored regions correspond to the area enclosed within the 5th and 95th
percentile (roughly the 2σ region).

Table 3. Cosmological constraints for different mass functions.

Parameter Ωm σ8 σ8(Ωm/0.27)0.3

Input 0.272 0.809 (0.8108)

hydro 0.273 ± 0.002 0.808 ± 0.003 0.8108 ± 0.0016
DM 0.264 ± 0.002 0.811 ± 0.003 0.8058 ± 0.0017

Tinker08 0.263 ± 0.003 0.809 ± 0.003 0.8021 ± 0.0018

6 OPTIMAL MASS DEFINITION

• We want to show what mass definition is “ideal” in the sense
that cosmological constraints are the tightest.
• Perform the mass function fit and cosmological analysis for

each definition available, and compare the area enclosed in Ωm-σ8

space.
• From this, choose the “best” definition.
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Table 2. Mass function parameters obtained from our hydro simulation for the mass definition M500, crit. We also provide the full covariance matrix.

Param. A a b c Az az bz

mean 0.15 ± 0.02 1.71 ± 0.21 2.15 ± 0.32 1.86 ± 0.07 0.70 ± 0.16 0.84 ± 0.06 −0.60 ± 0.09

Covariance matrix
A 4.53 × 10−4 1.18 × 10−3 −4.03 × 10−3 1.06 × 10−4 −7.55 × 10−4 −1.75 × 10−4 7.20 × 10−4

a 9.87 × 10−3 −1.35 × 10−2 2.08 × 10−3 3.64 × 10−3 2.38 × 10−4 −2.25 × 10−3

b 3.99 × 10−2 −1.05 × 10−3 −7.62 × 10−4 2.59 × 10−3 −2.23 × 10−3

c 7.71 × 10−4 −8.43 × 10−5 7.71 × 10−4 −4.18 × 10−4

Az 1.05 × 10−1 1.24 × 10−2 −8.65 × 10−2

az 6.43 × 10−3 −1.46 × 10−2

bz 7.60 × 10−2
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Figure 3. Parameter estimates for our dark matter simulation (green) and
hydro simulation (blue). The results are marginalized over the parameters’
redshift dependence (Equations 4-6). The fit from Tinker et al. (2008) is
indicated by the dashed lines.

• Comment in light of feasibility, and different mass measure-
ment techniques (X-ray, dispersion, WL, richness?).

7 SUMMARY

Review our results. Point our that these kind of studies are crucial
for the next-generation cluster surveys.
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